Learning Intelligent for Effective Sonography (LIFES) Model for Rapid Diagnosis of Heart Failure in Echocardiography
Abstract
Keywords
References
Kaptoge S, Pennells L, De Bacquer D, et al. World health organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. The Lancet global health. 2019;7(10):e1332-e1345. https://search.datacite.org/works/10.1016/s2214-109x(19)30318-3. DOI: 10.1016/s2214-109x(19)30318-3.
Clerkin K, Fried J, Raikhelkar J, et al. COVID-19 and cardiovascular disease. Circulation. 2020;141(20):1648-55. https://www.ncbi.nlm.nih.gov/pubmed/32200663. DOI: 10.1161/CIRCULATIONAHA.120.046941.
Kusunose K, Haga A, Abe T, Sata M. Utilization of artificial intelligence in echocardiography. Circulation J. 2019;83(8):1623-9. https://www.jstage.jst.go.jp/article/circj/83/8/83_CJ-19-0420/_article/-char/en. DOI: 10.1253/circj.CJ-19-0420.
Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317-35. https://www.ncbi.nlm.nih.gov/pubmed/30898208. DOI: 10.1016/j.jacc.2018.12.054.
Raghavendra U, Acharya UR, Gudigar A, et al. Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images. Neural Comput Appl. 2017;28(10):2869–78.
Sanchez-Martinez S, Duchateau N, Erdei T, et al. Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction. Circ Cardiovasc Imaging. 2018;11(4):e007138. DOI: 10.1161/CIRCIMAGING.117.0074
Kusunose K, Haga A, Abe T, Sata M. Utilization of artificial intelligence in echocardiography. Circulation J. 2019;83(8):1623-9. https://www.jstage.jst.go.jp/article/circj/83/8/83_CJ-19-0420/_article/-char/en. DOI: 10.1253/circj.CJ-19-0420.
Khamis H, Zurakhov G, Azar V, et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Medical Image Analysis. 2017;36:15-21. https://doi.org/10.1016/j.media.2016.10.007
Jiang Z, Lin Z, Davis L. 2013. Label consistent K-SVD: learning a discriminative dictionary for recognition. Transactions on Pattern Analysis and Machine Intelligence. 35:11.
Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing data should not be used to guide decisions on multiple imputation. Journal of Clinical Epidemiol. 2019;110: 63–73. https://doi.org/10.1016/j.jclinepi.2019.02.016.
Goodfellow I, Bengio Y, Courville A. Deep learning. London, England: MIT Press; 2016.
Patterson J, Gibson A. Deep learning a practitioner’s approach. Sebastopol, USA: O’Reilly Media; 2017.
Simonyan, Karen, Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. 2015. p. 1–14.
Reyes E, Ha J, Firdaus I, et al. Heart failure across Asia: Same healthcare burden but differences in organization of care. Int J Cardiol. 2016;233:163-7. https://doi.org/10.1016/j.ijcard.2016.07.256
Omar A, Narula S, Rahman M. et al. Precision phenotyping in heart Failure and pattern clustering of ultrasound data for the assessment of diastolic dysfunction. J Am Coll Cardiol. 2017;10:11. https://doi.org/10.1016/j.jcmg.2016.10.012.
Chiou Y, Hung C, Lin S. AI-assisted echocardiographic prescreening of heart failure with preserved ejection fraction on basis of intrabeat dynamics. J Am Coll Cardiol. 2021. https://doi.org/10.1016/j.jcmg.2021.05.005
Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. Nature Partner Journals. 2018;1:6. doi:10.1038/s41746-017-0013-1.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.